[1]牛雨晴,秦合伟*,李彦杰,等.基于网络药理学探讨加减保和丸防治动脉粥样硬化的作用机制[J].中国中医药图书情报杂志,2022,46(4):1-8.[doi:10.3969/j.issn.2095-5707.2022.04.001]
 NIU Yu-qing,QIN He-wei*,LI Yan-jie,et al.Discussion on the Mechanism of Preventing and Treating Atherosclerosis with the Modified Baohe Pills Based on Network Pharmacology[J].Chinese Journal of Library and Information Science for Traditional Chinese Medicine,2022,46(4):1-8.[doi:10.3969/j.issn.2095-5707.2022.04.001]
点击复制

基于网络药理学探讨加减保和丸防治动脉粥样硬化的作用机制

参考文献/References:

[1] Libby P, Ridker P M, Hansson G K. Progress and challenges in translating the biology of atherosclerosis[J]. Nature, 2011,473(7347):317-325.
[2] Kobiyama K, Ley K. Atherosclerosis[J]. Circulation Research, 2018,123(10):1118-1120.
[3] XU S, Kamato D, Little P J, et al. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics[J]. Pharmacology & Therapeutics, 2019,196:15-43.
[4] 秦合伟,李彦杰,张志鑫,等.化痰祛瘀法通过调控miR-181影响输入蛋白α3/NF-κB通路的抗动脉粥样硬化的研究[J].北京中医药大学学报,2020,43(8):653-660.
[5] 秦合伟,李彦杰,李斯锦.血管软化丸调控CD40-CD40L系统及抗动脉粥样硬化的作用机制研究[J].中华中医药学刊,2019,37(6):1306-1309,1543-1544.
[6] 朱旭,陈丽斌,纪立金.《丹溪心法》之保和丸刍议[J].中华中医药杂志,2019,34(1):265-267.
[7] RU J L, LI P, WANG J A, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014,6(1):13.
[8] 刘耀晨,张铁军,郭海彪,等.三七的研究进展及其质量标志物预测分析[J].中草药,2021,52(9):2733-2745.
[9] 任超,王萍,闫东明,等.三七总皂苷对动脉粥样硬化小鼠的治疗作用[J].中国药理学通报,2018,34(9):1289-1295.
[10] 董嘉琪,陈金鹏,龚苏晓,等.山楂的化学成分、药理作用及质量标志物(Q-Marker)预测[J].中草药,2021,52(9):2801-2818.
[11] 张玉颖,张晾.山楂对低密度脂蛋白受体基因敲除小鼠脂代谢的影响[J].西安交通大学学报(医学版),2014,35(1):120-123.
[12] 孙亚男,黄小波,粱伟,等.陈皮、半夏对动脉粥样硬化小鼠PI3K-Akt通路、SOD、MDA、SA-β-gal水平的影响[J].首都医科大学学报, 2018,39(6):805-809.
[13] 周楠茜,李鹏,石卫东,等.连翘苷对动脉粥样硬化模型大鼠的治疗作用及机制研究[J].中药药理与临床,2016,32(3):28-33.
[14] CAO H, JIA Q L, YAN L, et al. Quercetin suppresses the progression of atherosclerosis by regulating MST1-mediated autophagy in ox-LDL-induced RAW264.7 macrophage foam cells[J]. Int J Mol Sci, 2019,20(23):6093.
[15] LI S Z, HAO M H, WU T S, et al. Kaempferol alleviates human endothelial cell injury through circNOL12/miR-6873-3p/FRS2 axis[J]. Biomedicine & Pharmacotherapy, 2021,137:111419.
[16] Kattoor A J, Pothineni N V K, Palagiri D, et al. Oxidative stress in atherosclerosis[J]. Curr Atheroscler Rep, 2017,19(11):42.
[17] Marchio P, Guerra-Ojeda S, Vila J M, et al. Targeting early atherosclerosis: a focus on oxidative stress and inflammation[J]. Oxidative Medicine and Cellular Longevity, 2019(8):1-32.
[18] B?k M, Yurdagul A J, Tabas I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities[J]. Nature Reviews Cardiology, 2019,16(7):389-406.
[19] FENG X J, ZHANG L, XU S W, et al. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review[J]. Progress in Lipid Research, 2020,77:101006.
[20] Basatemur G L, J?gensen H F, Clarke M C H, et al. Vascular smooth muscle cells in atherosclerosis[J]. Nature Reviews Cardiology, 2019,16(12):727-744.
[21] Jonsson A L, B?khed F. Role of gut microbiota in atherosclerosis[J]. Nature Reviews Cardiology, 2017,14(2): 79-87.
[22] Senatus L M, Schmidt A M. The AGE-RAGE axis: implications for age-associated arterial diseases[J]. Frontiers in Genetics, 2017,8:187.
[23] SHAO M Z, YU M Y, ZHAO J, et al. MiR-21-3p regulates AGE/RAGE signalling and improves diabetic atherosclerosis: role of miR-21-3p[J]. Cell Biochemistry and Function, 2020,38(7):965-975.
[24] LIU M X, Galli G, WANG Y L, et al. Novel therapeutic targets for hypoxia-related cardiovascular diseases: the role of HIF-1[J]. Frontiers in Physiology, 2020,11:774.
[25] Jain T, Nikolopoulou E A, XU Q B, et al. Hypoxia inducible factor as a therapeutic target for atherosclerosis[J]. Pharmacology & Therapeutics, 2018,183:22-33.
[26] FENG S, Bowden N, Fragiadaki M, et al. Mechanical activation of hypoxia-inducible factor 1α drives endothelial dysfunction at atheroprone sites[J]. Arterioscler Thromb Vasc Biol, 2017,37(11):2087-2101.
[27] Perdomo L, Vidal-Gómez X, Soleti R, et al. Large extracellular vesicle-associated Rap1 accumulates in atherosclerotic plaques, correlates with vascular risks and is involved in atherosclerosis[J]. Circulation Research, 2020,127(6):747-760.
[28] Khyzha N, Khor M, DiStefano P V, et al. Regulation of CCL2 expression in human vascular endothelial cells by a neighboring divergently transcribed long noncoding RNA[J]. Proceedings of the National Academy of Sciences, 2019,116(33):16410-16419.
[29] Winter C, Silvestre-Roig C, Ortega-Gomez A, et al. Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates atherosclerosis[J]. Cell Metabolism, 2018,28(1):175-182.
[30] GAO W, LIU H B, YUAN J, et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-α mediated NF-кB pathway[J]. Journal of Cellular and Molecular Medicine, 2016,20(12):2318-2327.
[31] Tyrrell D J, Goldstein D R. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6[J]. Nature Reviews Cardiology, 2021,18(1):58-68.
[32] McCann J V, XIAO L, Kim D J, et al. Endothelial miR-30c suppresses tumor growth via inhibition of TGF-β-induced Serpine 1[J]. The Journal of Clinical Investigation, 2019,129(4):1654-1670.
[33] Sahebkar A, Catena C, Ray K K, et al. Impact of statin therapy on plasma levels of plasminogen activator inhibitor-1. A systematic review and meta-analysis of randomised controlled trials[J]. Thrombosis and Haemostasis, 2016,116(1):162-171.

备注/Memo

收稿日期:2021-11-02

基金项目:国家自然科学基金(81704030);河南省科技攻关计划项目(212102310359);河南省中医药科学研究专项重点课题(20-21ZY1023);河南省中医药拔尖人才培养项目(豫卫中医函[2021]15号);中原英才计划-中原青年拔尖人才资助(豫组通[2021]44号)
第一作者:牛雨晴,E-mail: niuyuqing2020@126.com
*通讯作者:秦合伟,E-mail: qinhewei2012@126.com

更新日期/Last Update:

2022-07-05