[1]孙超,谢晴宇*.中医病历术语识别方法探讨[J].中国中医药图书情报杂志,2020,44(2):1-5.[doi:10.3969/j.issn.2095-5707.2020.02.001]
 SUN Chao,XIE Qing-yu*.Discussion on Methods of Terminology Recognition in TCM Medical Records[J].Chinese Journal of Library and Information Science for Traditional Chinese Medicine,2020,44(2):1-5.[doi:10.3969/j.issn.2095-5707.2020.02.001]
点击复制

中医病历术语识别方法探讨

参考文献/References:

[1] 荣光,谢晴宇,孟庆刚.中医电子病历研究领域科学知识图谱分析[J].中国中医药信息杂志,2017,24(1):99-104.
[2] HE J, BAXTER S L, XU J, et al. The practical implementation of artificial intelligence technologies in medicine[J]. Nat Med, 2019,25(1):30-36.
[3] GULSHAN V, PENG L, CORAM M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus Photographs[J]. JAMA, 2016,316(22):2402-2410.
[4] KERMANY D S, GOLDBAUM M, CAI W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018,172:1122-1131.
[5] ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017,542(7639):115-118.
[6] CHENG J Z, NI D, CHOU Y H, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans[J]. Sci Rep, 2016(6):24454.
[7] FORD E, CARROLL J A, SMITH H E, et al. Extracting information from the text of electronic medical records to improve case detection: a systematic review[J]. Journal of the American Medical Informatics Association, 2016,23(5): 1007-1015.
[8] GRISHMAN R, SUNDHEIM B. Message Understanding Conference 6: A Brief History[C]// Proceedings of the 16th conference on Computational linguistics - Volume 1. Association for Computational Linguistics, 1996:466-471.
[9] CHOWDHURY S, DONG X, QIAN L, et al. A multitask bi-directional RNN model for named entity recognition on Chinese electronic medical records[J]. BMC Bioinformatics, 2018,19(17):499.
[10] WANG Y Q, YU Z H, CHEN L, et al. Supervised methods for symptom name recognition in free-text clinical records of traditional Chinese medicine: An empirical study[J]. Journal of Biomedical Informatics, 2014,47:91-104.
[11] 刘凯,周雪忠,于剑,等.基于条件随机场的中医临床病历命名实体抽取[J].计算机工程,2014,40(9):312-316.
[12] 叶辉,姬东鸿.基于多特征条件随机场的《金匮要略》症状药物信息抽取研究[J].中国中医药图书情报杂志,2016,40(5):14-17.
[13] 孟洪宇,谢晴宇,常虹,等.基于条件随机场的《伤寒论》中医术语自动识别[J].北京中医药大学学报,2015,38(9):587-590.
[14] LECUN Y, BENGIO Y, HINTON G. Deep Learning[J].Nature, 2015,521(7553):436-444.
[15] BENGIO Y, SCHWENK H, SENECAL J S, et al. Neural probabilistic language models[M]. Innovations in Machine Learning. Springer, 2006:137-186.
[16] FINKEL J R, GRENAGER T, MANNING C. Incorporating non-local information into information extraction systems by gibbs sampling[C]// Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2005:363-370.
[17] 王蕾,谢云,周俊生,等.基于神经网络的片段级中文命名实体识别[J].中文信息学报,2018,32(3):84-90,100.
[18] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994,5(2):157-166.
[19] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997,9(8):1735-1780.
[20] GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: Continual prediction with LSTM[J]. Neural computation, 2000, 12(10):2451-2471.
[21] GRAVES A. Supervised sequence labelling with recurrent neural networks[M]. Springer,2012:37-45.
[22] LAMPIE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[J]. Proceedings of NAACL-HLT, 2016:260-270.
[23] MA X Z, HOVY E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, 2016:1064-1074.
[24] HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint arXiv:1508.0199(2015).
[25] 张艺品,关贝,吕荫润,等.深度学习基础上的中医实体抽取方法研究[J].医学信息学杂志,2019,40(2):58-63.
[26] 高甦,金佩,张德政.基于深度学习的中医典籍命名实体识别研究[J].情报工程,2019,5(1):113-123.

备注/Memo

收稿日期:2019-10-15

基金项目:北京中医药“薪火传承3+3工程”崔锡章中医文化传承工作室
第一作者:孙超,E-mail: sunchaotcm@ccmu.edu.cn
*通讯作者:谢晴宇,E-mail: xieqingyu@vip.126.com

更新日期/Last Update:

2020-03-23